2017 FLYSET FTC Workshop

Hosted by

#8565 Robot Improvements

Patrick Lin

Qualifier

Qualifier Highlights

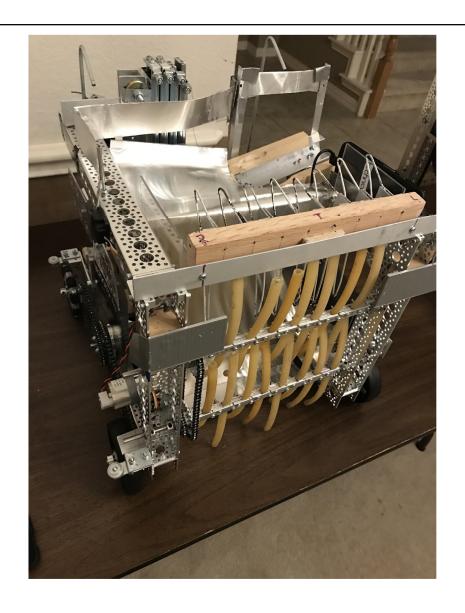
- Broke the world record with a score of 260 with team #7172 Technical Difficulties
- During the competition, before finals our shooter broke, but we managed to fix it.

Robot details

Chassis:

- 2 motor 4 wheel drive with chains
- Slow turns
- Motors get hot easily

Teleop:


- Spring flicker: somewhat consistent
- Could hold 2 3
 particles in the robot at
 once

Endgame:

 Could cap the cap ball, but the driver had to be very delicate with the controls

North Texas Regional Championship

North Texas Regional Highlights

- An inconsistent autonomous (because of loosen guider wheel structure) made it very difficult to win games in this regional
- We barely qualified for Super Regionals: one more loss would have ended our season

Autonomous Changes made for Regional

 Slightly tuned the navigation portion: turns and moving forwards and backwards.

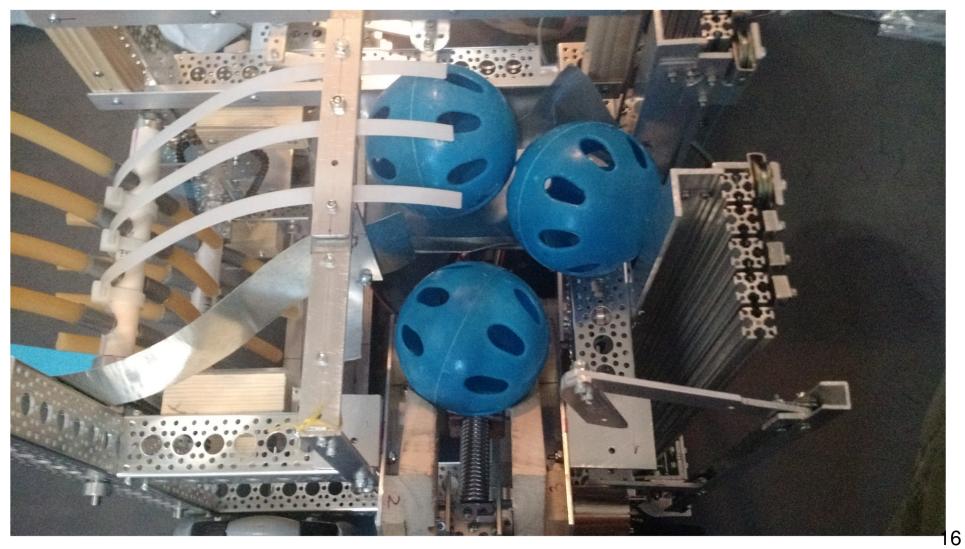
Autonomous Performance

- Continued to get stuck occasionally on the border and mat, costing us a few qualification matches
- Pretty inconsistent, we had little confidence that we could get 2 beacons

Teleop Changes made for Regional

- Modified our tape walls that prevented particles from flying out of our sweeper
- Converted from primarily Tetrix to Actobotics for the chassis and robot general structure

Teleop Performance


- Averaged around 4 particles a game as an alliance
- Wheels fell off less with Actobotics clamps

Endgame Changes made for Regional

Minor adjustments

South Super Regional (SSR)

South Super Regional Highlights

- Qualification matches: 7 wins 2 loses
- Lost our first eliminations match

Autonomous Changes made for SSR

- Changed the autonomous route to go for the further beacon first (bonus discovered at Worlds)
- Added more autonomous programs for strategy diversity
- Extended our glider wheels further out so wheels wouldn't fall off the edge

SSR Autonomous Performance

- Hit both beacons 80% of the time
- Often missed one particle out of two

Teleop Changes made for SSR

- Changed to 6" wheels to drive faster, 2 of which are omni wheels for faster turns
- Added an ultrasonic sensor to detect how many balls in storage
- Lengthened the path the particles had to travel in order to hold more balls
- Added zip ties to help glide the balls from the

SSR Teleop Performance

- Averaged around 10 particles in an alliance
- Able to navigate the field much faster

Endgame Changes made for SSR

- Converted to REV Robotics rails for our duo linear slide
- Changed from aluminum sticks to aluminum beams on our cap ball mechanism, and adjusted their dimensions
- Changed the linear lift motor cylinder shape to more of an hourglass to prevent the string from falling out

SSR Endgame Performance

- Slightly better than previous tournaments
- Very few mechanical errors, mainly relied on driver performance

Houston World Championship

Houston World Highlights

- Qualification matches: 8 wins 1 lose
- Lost our first eliminations match:
 - The first game the opponents outscored us in particles
 - The second game our alliance disconnected after getting sandwiched

Autonomous Changes made for Worlds

- Tuned the pathway of the robot so that it wouldn't cross the middle of the field
- Tuned basic turns, and distances
- Added more autonomous programs for more variety
- Extra long beacon pressers

Houston Worlds Autonomous Performance

- 95% consistency autonomous (2 beacons and 2 particles) in worlds, messed up once on the first day
- Extremely fast autonomous, was able to avoid defensive autos from opponents

Teleop Changes made for Worlds

- Same spring flicker, but adjusted the length of the spring to shoot less far
- Added a passive beacon pressed on the back
- Changed our zip tie particle glider to wooden triangles for more speed

Houston Worlds Teleop Performance

- Averaged around 14 18 particles WITH our alliance partner
- Could more easily press beacons

Endgame Changes made for Worlds

 Very minor length adjustments on our arm to allow cap ball to get on easier

Houston Worlds Endgame Performance

 Cap ball success continued to rely too much on driver performance, sharp turns or fast accelerations would make the cap ball roll off

