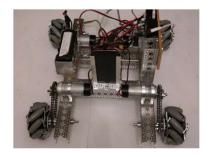
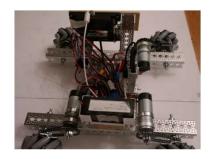
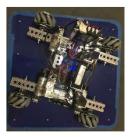


Evan Li


- Builder
- Started with the team in FTC (rising 5th year)
- Went to South Super-Regionals in 2016, 2017, and 2018
- Went to Houston Worlds in 2017
- Main Driver at SSR in 2018 (Athens, GA)
 - o Held record for fastest cypher completed (52 seconds)



4-Wheel Mecanum Drive


Base Weight: 14.7 pounds

4-Wheel Mecanum Drive

No Load

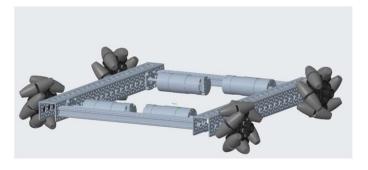
15 lbs Load

30 lbs Load

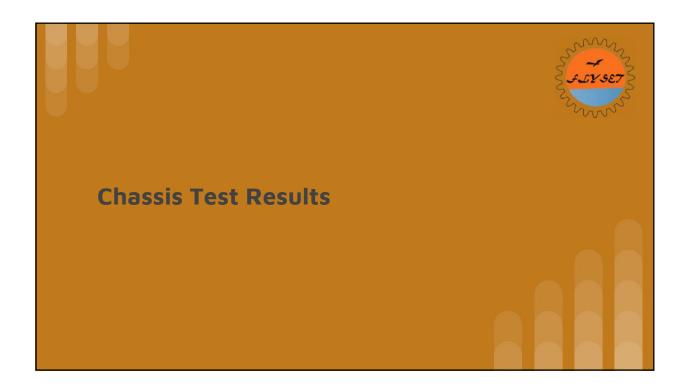
technicbots 8565



4-Wheel Mecanum Drive


- Actobotics based chassis
- Four NeveRest 40 motors
- Four wheel independent chain drive
- Gear ratio from motor to wheel: 24:16 (equivalent to NeveRest 26.7)
- Consists of two pairs of mecanum wheels
- REV expansion hub is vertically mounted on the robot chassis
- Base chassis weight: 14.7 lbs
- 4 support columns that act as inserts for the weights to be mounted

4-Wheel Mecanum Drive in Design Phase



4-Wheel Mecanum Drive CAD Notes

- Could not find the correct mecanum wheels used for the real build (am-3062L)
- Layout of chassis was tentative; changed to the H chassis in the real build
- Extrusions taken out (used Actobotics channels in the real build)
- $\bullet \quad \text{Direct drive} \to \text{Independent Chain Drive}$
- 4-Wheel Drive stayed the same

4-Wheel Mecanum Drive Build Notes

- Inspiration: last season Relic Recovery; personally, as a driver, felt the need for versatility on the field
- Build Order
 - a. Mecanum Wheel Assembly
 - b. H-frame with 4 Actobotics Channel
 - c. Initial Chassis Assembly
 - d. Motor and Chain Attachment
 - e. Modules + Wiring
 - f. Phone Holder, Weight Rack, other accessories, etc.
- H-frame chosen for stability + more capacity
- Mecanum assembled in X-formation to enable general movement and strafing ability
- $\bullet \quad \text{ 4-Wheel Independent Chain Drive chosen for agility (started with 20s but too fast \rightarrow 40s)}$

REV Expansion Hub attached vertically to save space + gyro turn test

technicbots 8565

4-Wheel Mecanum Drive Build Notes

- Equivalent length channels on frame to prevent drifting in forward speed test
- Wheels MUST protrude in front of channels, cannot climb balance stone if so
- Motor testing to find two pairs of matching motors to prevent drifting
- Chain slippage on motor shaft due to high torque → double D-clamp attachment
- 20 → 40 bc 20 was too fast, however, 40 was too slow → sprocket change to speed it up to gear ratio 26.7 : 1
- Weight rack assembled to balance center of mass → distribute equivalent weights to all 4 mecanum wheels

4-Wheel Mecanum Drive Build Notes

Motor Testing:

Motor	Right Back Motor	Right-Front Motor	Motor	Left Rack Motor	Left-Front Motor
Port on REV Hub	Port 0	Port 1	Port on REV Hub	Port 0	Port 1
	1.757.7			1 2 1 2	1,717.5
Encoder reading #1	16,076	16,889	Encoder reading #1	16,282	16,102
Encoder reading #2	16, 171	16,879	Encoder reading #2	16,226	16,059
Encoder reading #3	16, 167	16,817	Encoder reading #3	16,167	16,031
Encoder reading #4	16, 159	16,763	Encoder reading #4	16,152	15,997
Encoder reading #5	16,076	16,763	Encoder reading #5	16,148	16,005
Encoder reading #6	16, 151	16,702	Encoder reading #6	16,094	15,974
Encoder reading #7	16, 139	16,678	Encoder reading #7	16,067	15,933
Encoder reading #8	16,070	16,637	Encoder reading #8	16,092	15,935
Encoder reading #9	16,051	16,609	Encoder reading #9	16,003	15,978
Encoder reading #10	16,047	16,592	Encoder reading #10	15,986	15,864
Encoder reading #11	16,015	16,550	Encoder reading #11	15,994	15,864
Encoder reading #12	16,003	16,554	Encoder reading #12	15,963	15,850
Average	16,094	16,703	Average	16,098	15,966

technicbots 8565

Test 1: Forward Speed Test

- Drive forward in autonomous mode for 5 seconds at full power (100%) (Sensitive to voltage)
- 11 x 2 official FTC field tiles were used for running this test case
- Distance traveled was measured in meters

	No Load		15-lbs	Load	30-lbs Load	
	Distance	Voltage	Distance	Voltage	Distance	Voltage
Test Run #1	6.46	13.25V	6.12	13.13V	6.3	13.37V
Test Run #2	6.35	13.21V	6.11	13.09V	6.24	13.32V
Test Run #3	6.32	13.17V	6.42	13.44V	6.06	13.28V
Average Value	6.3	38	6.:	22	6.3	20

- Distance traveled was sensitive to the battery voltage level. Some test runs were done with the battery voltage level below 13.25V.
- Load on chassis had some impact on the distance traveled, but the impact was not significant.

Test 2: 3 Second Turn Test

- Spun in autonomous mode for 3 seconds at full power (one side 100% power forward, other side 100% power backward) (Sensitive to voltage)
- 2 x 2 official FTC field tiles were used for this test case
- The degree that it rotates were measured, using the IMU sensor
- 360 degrees were added to the measurements for each full rotation.

	No Load		15-lbs	Load	30-lbs Load	
	Degree	Voltage	Degree	Voltage	Degree	Voltage
Test Run #1	557.3	13.32V	508	13.24V	466.7	13.51V
Test Run #2	558.4	13.29V	533	13.22V	467.6	13.47V
Test Run #3	539.1	13.27V	532.3	13.19V	467	13.45V
Average Value	55	1.6	52	4.4	46	7.1

 There were some variations in the measurements. Some test runs were done with the battery voltage level below 13.25V.

• The chassis spun in less degrees with more load.

technicbots 8565

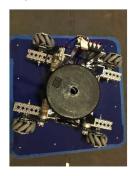
Test 3: Balance Stone Balancing Ability

- Drive onto the Relic Recovery balance stone manually, and then attempted to balance on the stone.
- Record whether the drivetrain can get onto the balance stone and how many seconds it can stay on after the joystick control is released.
- The balanced stone was put on official FTC field tiles.

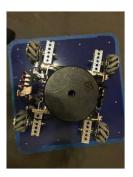
	No load	15-lbs Load	30-lbs Load
Go on the stone?	Yes	Yes	Yes
How long on the stone? (forever is settled on the stone)	Forever	Forever	Forever

• Issue: The drivetrain had some trouble to complete the task by moving forward directly onto the balance stone, since its frame would hit the balance stone first.

Resolution: By turning diagonally and using the wheels to climb, the drivetrain was able to get onto the balance stone.



Test 3: Balance Stone Balancing Ability


No Load

15 lbs Load

30 lbs Load

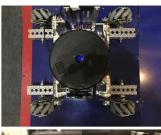
technicbots 8565

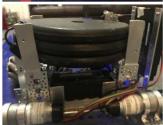
Test 4: Driving Up/Down A Ramp

- Drove up and down a ramp in TeleOP mode'
- Ramp from FTC Cascade Effect Challenge was put on official FTC field tiles
- Record whether it can drive up and down the ramp,

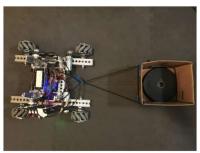
	No load	15-lbs Load	30-lbs Load
Up ramp	Yes	Yes	Yes
Down ramp	Yes	Yes	Yes


- Issue: Drivetrain got stuck on the top of the ramp, as the REV Expansion hub mount bracket extended below the chassis frame
- Resolution: Drivetrain was able to get up and down the ramp smoothly, after the Expansion hub mount bracket was raised.





Test 4: Driving Up/Down A Ramp



Test 5: Pull Strength Test

- Drove forward in autonomous mode to cover 10 feet at full power (Sensitive to voltage)
- Weights put into a cardboard sled pull by the drivetrain with a string.
- Weights added in an incremental manner (10 lbs, 20 lbs, 30 lbs, and 40 lbs)
- 11 x 2 official FTC field tiles were used for running this test case.
- Time took to travel 10 feet was measured in seconds

Test 5: Pull Strength Test

Test 5.1: Pull test (10lbs)	No Load		15-lbs Load		30-lbs Load	
rest 5.1. Pull test (10lbs)	Time (Sec)	Voltage	Time (Sec)	Voltage	Time (Sec)	Voltage
Test Run #1					4.11	13.57V
Test Run #2					4.13	
Test Run #3					4.33	
Average Value	4.8	33	4.5	0	4.2	2

- Most of the raw data were lost, except the average values
- No issues for the drivetrain to pull the weight of 10 lbs.
- The heavier the chassis (plus extra load) was, the less time it took to complete the task

Test 5.2: Pull test (20lbs)	No Load		15-lbs Load		30-lbs Load	
rest 5.2. Full test (20lbs)	Time (Sec)	Voltage	Time (Sec)	Voltage	Time (Sec)	Voltage
Test Run #1						
Test Run #2)			
Test Run #3						
Average Value			5.9	8	5.2	27

- Most of the raw data were lost, except the average values
- It took a little longer for the drivetrain to pull the weight of 20 lbs.
- It was unable to pull the weight of 20 lbs with no load, since the wheels became too slippery.

Test 5: Pull Strength Test

Test 5.3: Pull test (30lbs)	No Load		15-lbs Load		30-lbs Load	
Test 5.5. Full test (50lbs)	Time (Sec)	Voltage	Time (Sec)	Voltage	Time (Sec)	Voltage
Test Run #1			8.16	13.48V	8.76	13.46V
Test Run #2			8.23		8.31	
Test Run #3			8.46		8.49	
Average Value			8.2	8	8.5	2

- It took much longer to complete the task, when pulling the weight of 30 lbs.
- The rollers of the Mecanum wheels were slipped on the tiles lots of time, which caused the chassis being pulled sideways.
- It was unable to pull the weight of 30 lbs with no load.

Test 5.4: Pull test (40lbs)	No Load		15-lbs Load		30-lbs Load	
Test 5.4. Full test (40lbs)	Time (Sec)	Voltage	Time (Sec)	Voltage	Time (Sec)	Voltage
Test Run #1						
Test Run #2						
Test Run #3						
Average Value			1			

It was unable to pull the weight of 40 lbs in all conditions.

Test 6: Straight Line Drift Test (Optional)

- Drove forward in autonomous mode to cover 10 feet at full power.
- Motor encoder on left_front wheel needed.
- 11 x 2 official FTC field tiles were used for running this test case.
- Horizontal drift, perpendicular to the drive train's motion, was measured in inches.
- Drivetrain jerked at the start point as well as at the end point, when it started or ended at the full power \rightarrow due to the less traction of mecanum wheels.
- A ramp up/down algorithm was developed for reducing the jerk with the power being increased or decreased in multiple stages \rightarrow It did not help for this drivetrain.

Test results with the full power:

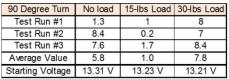
Test results with the ramp up/down algorithm:

	No load	15-lbs Load	30-lbs Load
Test Run #1	10.5	10.2	6
Test Run #2	10.1	6	10.3
Test Run #3	7	2.5	4
Average Value	9.2	6.2	6.8

No load 15-lbs Load 30-lbs Load Test Run #1 12.5 7.5 Test Run #2 27 8.6 4 Test Run #3 23 9.5 2 Average Value 26.7 10.2 4.5 Starting Voltage 13.74 V 13.87 V 13.4 V

Heavier load helped reducing the drifting.

technicbots 8565



- Turned 90 and 180 degrees respectively in autonomous mode at 60% power.
- Use built-in IMU in REV Expansion Hub (vertical mount).
- 2 x 2 official FTC field tiles were used for this test case.
- Offset was measured in degrees from target angle, as read from IMU displayed on the driver station phone.
- Kp was tuned with 15 lbs load.

Test results for 90 degree turn:

Test results for 180 degree turn:

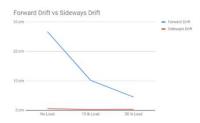
180 Degree Turn	No load	15-lbs Load	30-lbs Load
Test Run #1	8.1	0.7	7.9
Test Run #2	9.3	1.9	7
Test Run #3	9.7	1	7.8
Average Value	9.0	1.2	7.6
Starting Voltage	13.53 V	13.68 V	13.48 V

Kp was first tuned with no load, but it did not work well for the runs with 15-lbs and 30-lbs loads.

Test 8.1: Sideways Speed Test (Optional)

• Special test for Mecanum wheel strafing capability

	No Load	15 lb Load	30 lb Load
Distance traveled	12.71V	12.67V	14.08V ■ 3.33m ■ 3.28m ■ 3.24m


technicbots 8565

Test 8.2: Sideways Drift Test (Optional)

Special test for Mecanum wheel strafing capability

	No Load	15 lb Load	30 lb Load	
Distance Drifted	13.76V	13.65V	13.45V	

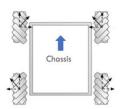
4-Wheel Mecanum Drive Summary

Pro:

- Drive train was extremely mobile and versatile
- Can move at any angle → advantage in turning and directional driving (strafing)
- Heavier load benefits mecanum traction issue

Con:

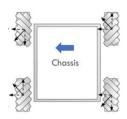
- Less traction than normal wheels (slippage under high stress testing such as pull test)
 - o Disadvantage on field if defensive plays are occuring
- Not able to hold its ground in sudden movement (start/stop jerk motion esp in autonomous)



Driving the Mecanum Chassis

1. Driving Forward/Backward

- a. Mecanum in X pattern
- b. Horizontal force from left + right wheels cancel out in dynamic equilibrium
- c. Net force pushes the chassis forward
- d. Motor power set negative, chassis moves backward under same reasoning



technicbots 8565

Driving the Mecanum Chassis

2. Strafing Left/Right (Crab movement)

- a. Left wheels drive toward each other + right wheels drive toward each other \rightarrow force cancels out
- b. Net force pushes chassis left
- c. Vice versa for right strafing

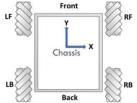
Driving the Mecanum Chassis

3. Rotating Clockwise/Counter-Clockwise

- a. Left forward, right backward → combined force spins the robot clockwise (like normal wheels)
- b. Vice versa for counter-clockwise

technicbots 8565

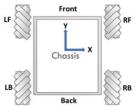
Driving the Mecanum Chassis


Chassis Motion Direction	Left-Front Wheel	Right-Front Wheel	Left-Back Wheel	Right-Back Wheel
Drive Forward	+	+	+	+
Drive Backward	-	-	-	-
Strafe Left	-	+	+	-
Strafe Right	+	-	-	+
Rotate CW	+	-	+	-
Rotate CCW	-	+	-	+

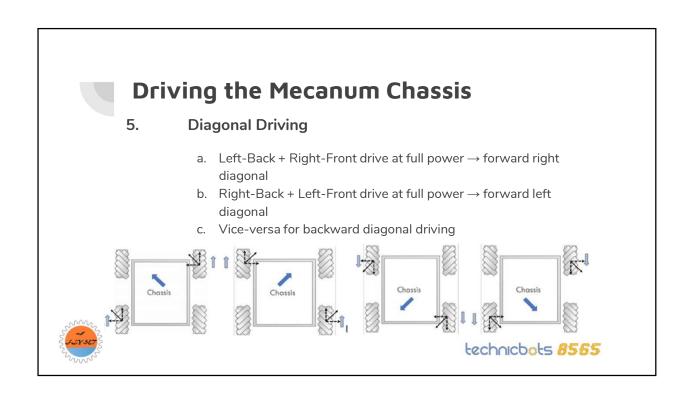
Driving the Mecanum Chassis

4. Gamepad Logic

- a. Pushing the right joystick on its y-axis gives a y-value
 - i. (+ = forward, = backward)
- b. Pushing the right joystick on its x-axis gives a x-value
 - i. (+ = right, = left)
- c. Pushing the left joystick on its x-axis gives a r-value
 - i. (+ = clockwise, = counter-clockwise)
- d. Left joystick y-axis unused



technicbots 8565


Driving the Mecanum Chassis

4. Gamepad Logic (Drive Algorithm)

- : a. Front_Left_Power = + x + y + (k*r)Front_Right_Power = - x + y - (k*r)
 - Back_Left_Power = -x + y + (k*r)
 - $Back_Right_Power = + x + y (k*r)$

