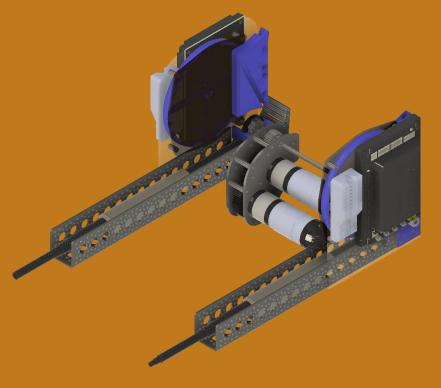
2019 FLYSET FTC Workshop

7172 - telescoping linea extension, elevator, omniwheel encoder

(8/24/2019)



Presented by 7172 Matthew Thomas Sophie Guerin Abinav Damera

Telescoping extension

Goals for linear extensions

Length - sufficient reach to score points Fast - extend fully in less than 1 second Strong / reliable

Background

Used in Rover Ruckus season

Based on concept used by i2c Robotics in Res-Q season

Telescoping components

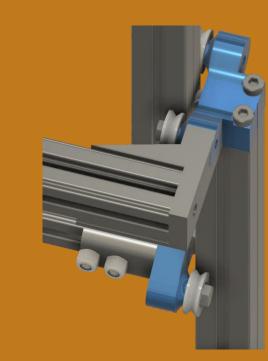
- Telescoping fishing pole
 - Carbon fiber light and strong
 - Excellent reach
- Flexible rack gear (KHKGears.us)
- Driving gear
- 3D-printed gear guide
- Gear storage system

Challenges

- Fit inside of 18"
 - Tight bend required at insertion point
- Gear rack storage
 - Avoid kinking or breaking rack gears
- Motor synchronization when using two poles
 - Stinger: unsynchronized, sometimes binds
 - Chariot: 2 motors drive common axle

Video demonstration

https://youtu.be/fF23CUXN4XI



Results

- Length: Excellent
 - Extend 48+ inches
 - Limited primarily by length of rack gear (2M)
- Speed: Excellent
 - Unloaded full extension in 0.5 seconds
 - Loaded good extension in ~1 second
- Reliability: Fair
 - Pro: Cord / pulleys not needed, less entanglement
 - Con: Rack gears can break easily if not managed
 - Telescoping poles increase friction with use
- Cost: high (\$35 per rack gear, \$30 per pole)

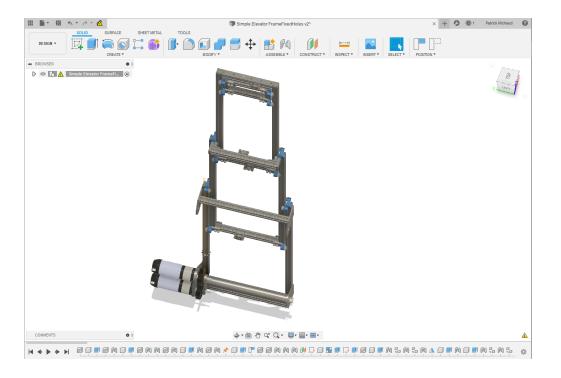
Elevator Lift

Goals for elevator lift

- Strong / reliable
 - Able to lift robot weight if needed
 - Won't bind, kink, break, snap
- Length
 - Achieve at least 40 inches of extension
 - As far as possible with 2 stages
- Fast
 - Full extension in under 1 second
 - Ideally around 0.5 second

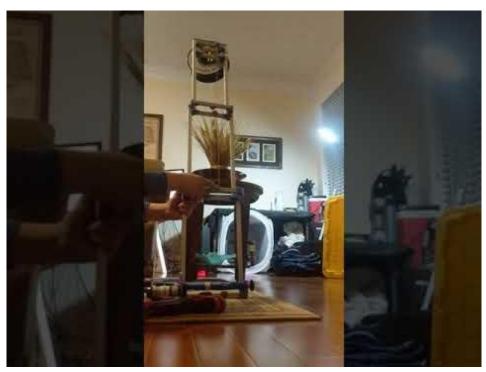
Background

Based on frame-based elevators used by top FRC teams



Telescoping components

- REV punch tubes and extrusion
- Pulley bearings
 - \circ $% \left(Lots of pulley bearings \right)$
- 3D printed parts
- Motors, gears, axles, etc.
- Spring assist
 - May not be FTC legal as purchased



Video demonstration

https://youtu.be/5oV5_snbVPo

Results

- Length: Good
 - Extend 40+ inches, more with articulated arm
 - Limited primarily by 18" size constraint
- Speed: Excellent
 - Unloaded full extension in 0.5 seconds
 - Loaded good extension in ~1 second with 4 pound payload
 - Spring balancer makes a big difference
- Reliability: Good so far
 - \circ $\;$ Needs testing on field and on robot $\;$
- Cost: average

Encoder navigation

Goals for encoder navigation

- Enable robot to know its position on the field to within 1"
- Program autonomous modes using waypoints
- Repeatedly return to the same spot

Background

Based on encoder-based navigation

used by Gluten Free in Relic Recovery and Rover Ruckus seasons

Components for study

- VEX shaft encoders
 - Inexpensive, easy to wire to REV hubs
- VEX omniwheels
 - Easy to connect to VEX shaft encoders
- 7172 standard drive chassis
- 3D printed mounting components

Key observations

- VEX encoders have varying levels of quality
 - Some reliably give 360 ticks/rotation
 - Others seem to "miss" ticks

• Omni wheels need to be tensioned to surface

Three wheels needed to keep track of orientation and distance

Video demonstration

TECHNICAL SOLIFICULTUES TAT72

https://youtu.be/Ozm6f5Uy-X8

Results

- Still early in development
- Implementation only does positioning in one orientation; rotation being worked on next
- Some VEX encoders are inconsistent
 - Still determining why
 - Will likely switch to other encoders
- Very reasonable results
 - Can generally navigate to within 2 inches of target point,
 even with flaky encoders

Questions?

