
2019 FLYSET FTC Workshop

V-Frame 8 Wheel Chassis

(8/24/2019)

Presenters

Austin Liu - FTC 8565

- 9th year in FIRST
 - \circ $\,$ 3 years in Jr. FLL $\,$
 - \circ 3 years in FLL
 - 2 years in FTC
- Main Builder with Programming and CAD experience
- Enjoys Tennis and Video Games

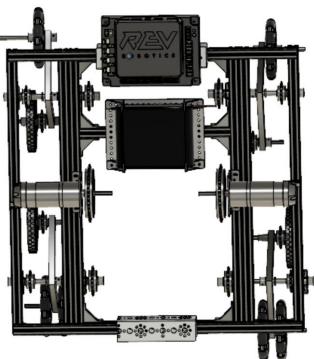
Audrey He - FTC 8565

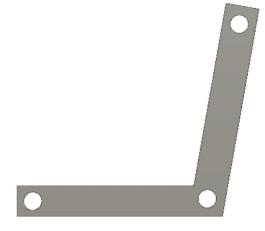
- 9th year in FIRST
 - \circ $\,$ 3 years in Jr. FLL $\,$
 - \circ 3 years in FLL
 - \circ 2 years in FTC
- Builder and notebook manager on the team
- Enjoys art and dance

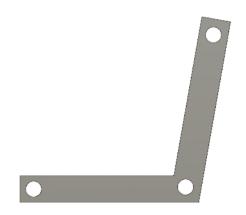
Project Background

V-Frame 8 Wheel Chassis

Chassis Design


Goals


- Build a similar chassis that can cross the crater efficiently
- Compare the chassis with other chassis in normal driving
 - Going straight
 - \circ Turning
- Evaluate the chassis in crossing crater



Chassis Build

For easy adjustment, I chose to 3D print my parts for fast prototyping.

V - Wheel Hole Sizing

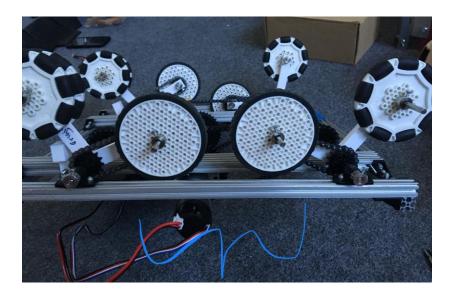
- Problem
 - \circ $\,$ Holes vary based on the 3D printer $\,$
 - Axles wobbled in place
- Solution
 - \circ $\hfill\hfilt$

V - Wheel Length Requirements

- Problem
 - Length was in between chain link size
- Solution
 - \circ $\;$ Adjust hole distance in the model to the perfect chain size

V - Wheel Strength

- Problem
 - V Wheel breaks under pressure
- Solution
 - Slowly increase the infill of the V Wheel
 - **20%**
 - **30%**
 - **50%**
 - **70%**



V - Wheel Pair Spacing

- Problem
 - Inner drive wheels weren't sync
 - Front frame was already over before back frame came into contact with the crater
- Solution
 - Find the best distance between the inner wheels


V - Wheel Pair Spacing

V - Wheel Rotational Limit

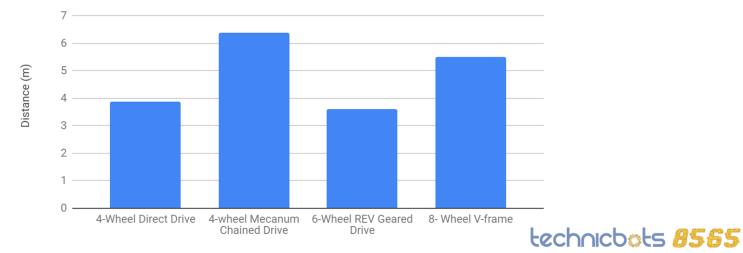
- Problem
 - \circ V-Frame rotates too much
 - Affects the crossing efficiency
- Solution
 - $\circ \quad \text{Custom printed block part}$

Project Results

Forward Speed Test Spec

- Drive forward for 5 seconds at full power (100%) (Sensitive to voltage)
- Measure distance traveled in meters

Forward Speed Test Code


```
// Run the robot forward for 5000 ms
while (runtime.milliseconds() < 5000 && opModeIsActive()) {
    // robot.leftFrontMotor.setPower(1);
    robot.leftBackMotor.setPower(0.97);
    // robot.rightFrontMotor.setPower(1);
    robot.rightBackMotor.setPower(1);
}
// Stop the robot
robot.stopRobot();</pre>
```

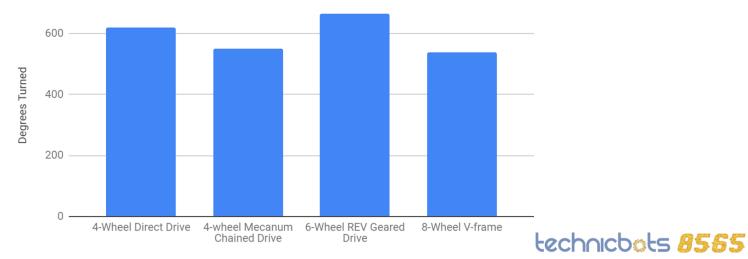

Forward Speed Test Results

	4-Wheel Direct Drive	4-wheel Mecanum Chained Drive	6-Wheel REV Geared Drive	8- Wheel V- frame REV
No load	3.87m	6.38m	3.60m	5.50m

3 Second Turn Test Spec

- Turn for 3 seconds at full power (one side 100% power forward, other side 100% power backward) (Sensitive to voltage)
- Record: can it turn freely? (Yes) Does it get stuck? (No)
- If it can turn freely, record how far it turned in degrees using IMU sensor
- Rotate more than 1 rotation, so need to add 360 degrees to the reading on the driver station which stays on the phone for 6 seconds after robot stops

3 Second Turn Test Code


```
waitForStart();
runtime.reset();// Turn the robot for 3000 ms
while (runtime.milliseconds() < 3000 && opModeIsActive()) {
    // robot.leftFrontMotor.setPower(-1);
    robot.leftBackMotor.setPower(-1);
    // robot.rightFrontMotor.setPower(1);
    robot.rightBackMotor.setPower(1);
```


3 Second Turn Test Results

	4-Wheel Direct Drive	4-wheel Mecanum Chained Drive	6-Wheel REV Geared Drive	8-Wheel V- frame REV
No load	618°	551°	664°	536°

Crater Crossing Test Spec

- Robot will start at one side of the crater
- Drive forward for 3 seconds at full power
- Check log on phone to see Gyro Sensor reading
- Record every other value

Crater Crossing Test Code

```
robot.leftBackMotor.setPower(0.9);
robot.rightBackMotor.setPower(1);
runtime.reset();
while (opModeIsActive() && (runtime.seconds() < 3.0)) {
   Log.i(tag: "angle:", msg: ""+getHeading());
   if(Math.abs(getHeading()) > memes) memes = Math.abs(getHeading());
   telemetry.addData(caption: "Highest Angle: ", memes);
   telemetry.update();
```


Crater Crossing Test Video

Crater Crossing Test Comparison

• Not completed yet because the chassis has not been tuned to go through the crater entirely

Conclusions

Next Steps

- Thicken the V-Frames and finalize hole distance
- Raise the motors up higher on the chassis
- Two points of connection on the blockers

Questions?